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Abstract

In this paper, we explore the use of a graph algorithm called the normalized cut in
order to organize prominent components of the auditory scene. We focus specifi-
cally on defining a time-constrained similarity metric. We show that such a metric
can be successfully expressed in terms of the time and frequency masking phe-
nomena and can be used to solve common problems in auditory scene analysis.

1 Introduction

Auditory scene analysis attempts to organize auditory sensory input in order to derive from it a use-
ful representation of reality that may be used by higher-level cognitive processes such as planning.
Bregman [1] tells us that organizing auditory stimuli according to the source of the stimuli is impor-
tant to the development of an accurate representation. While human perception is able to accomplish
this task quite well, computational algorithms designed to accurately model auditory perception are
exceedingly difficult to develop because the cues that affect perception of an auditory stimuli are
not yet clear to us and they are undoubtedly large in number; contextual parameters, and the level
of “acoustic maturity” and motivation of a listener are some of the more, complex and difficult to
quantify examples of such cues. Furthermore, the functions among these parameters that accurately
model human perception are difficult to extract from psychological testing due to this complex cues.

Despite this complexity, it is clear that temporal cues play a critical role in this process of source
identification and segmentation. This intuitively makes sense within the context of the physical
world because acoustic events that are proximal in time are more likely to be related than those that
occur far apart.

In this paper we explore the use of a graph algorithm called the normalized cut in order to organize
prominent components of the auditory scene according to several constraints. The normalized cut
criterion for graph partitioning was initially proposed for image segmentation [2]. It is a representa-
tive example of spectral clustering techniques which use an affinity matrix W to encode topological
knowledge about a problem.

Spectral clustering approaches have been used in a variety of applications including high perfor-
mance computing, web mining, biological data analysis, image segmentation and motion tracking.
There are few applications of spectral clustering to audio processing that we are aware of: blind
one-microphone speech separation [3] and unsupervised clustering of similar sounding segments of
audio [4, 5]. Closer to our approach, harmonicity relationships and common fate cues underlie a de-
vised similarity measure presented by Srinivasan [6]. However, the sound source formation process
is done on a frame basis only. To integrate time constraints, it is proposed in [7] to cluster previously
tracked partials to form ’blobs’ according to onset cues. Normalized cut clustering is then carried
out on the elements of this intermediate representation.
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Figure 1: ASA scenario illustrating the temporal constraints in the simultaneous integration level.
In this case, the noise burst leads to the perceptual continuity of the tone.

Alternatively, we propose an analysis framework for simultaneous sound source formation and track-
ing. We particularly focus on incorporating temporal constraints that model human perception of
continuity and streaming into the affinity matrix W. We propose to address this issue by introducing
a similarity metric expressed in terms of the masking phenomenon.

This paper is organized as follows: after presenting temporal aspects of auditory scene analysis
in section 2, we describe our computational framework in section 3. We introduce in section 4,
a dissimilarity metric that incorporates our temporal constraints, and we show that the use of this
similarity metric can handle some known problems in auditory scene analysis.

2 Temporal Constraints in Auditory Scene Analysis

The choice to model aspects of spectral clustering algorithms after human perception can be justified
on two levels. Firstly, human perception has evolved to organize acoustic events in a manner that
is likely to mirror the organization of sound sources within the physical world. Secondly, the way
the human auditory system is constructed gives us insight into how we should design our analysis
framework.

We consider three common levels of sound integration. The first integration level is the spectral level
(spectrogram, correlelogram, etc.) which mimics the output of the inner ear. Bregman proposed two
additional higher-level integration schemes: simultaneous integration and sequential integration [1].
Simultaneous integration facilitates the identification of sound sources, while sequential integration
organizes these sources through time, forming what Bregman describes as streams.

The temporal properties of acoustic events play an important role in the way in which we may
perceptually form (simultaneous integration) and group (sequential integration) these events. Here
we describe one particular auditory scene analysis scenario that was originally proposed by Bregman
which clearly illustrates integration at the simultaneous level.

The ASA scenario, illustrated in figure 1, is comprised of an oscillating pitch glide with a discrete
break positioned within the glide. The break may contain silence or be filled with noise. While the
glide is audibly disjoint in the case where the break contains silence, the glide may be perceived
as a single acoustic entity that is continuous through the noise if the noise is of sufficient power.
However, the duration of the break within the pitch oscillation also contributes to this effect; in the
case where the break contains silence, the glide may still be perceived as continuous at the spectral
level if the duration of the silence is reduced sufficiently. Similarly, the glide may be perceived as
disconnected in the case where noise is introduced in the break if the duration of the break is made
sufficiently long.

3 Computational Framework

We now present our computational framework based on the use of the normalized cut to cluster
sinusoidal components in order to form sound sources.
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Figure 2: Orca Vocalization tracked using the normalized cut.

Sinusoidal modeling aims to represent a sound signal as a sum of sinusoids characterized by ampli-
tudes, frequencies, and phases. A common approach is to segment the signal into successive frames
of small duration so that the stationarity assumption is met. The discrete signal z* (n) at frame index
k is then modeled as follows:

Lk
2
aF(n) = ;af cos (;:fﬁ-nwf) (1)

where F is the sampling frequency and gzﬁf is the phase at the beginning of the frame of the [-th
component of L; sine waves. The fn and an are respectively the frequency and the amplitude of the
1-th sine wave, both of which are considered as constant within the frame. For each frame k, a set of
sinusoidal parameters S* = {p},-- -, plz . | is estimated. The system parameters of this Short-Term

Sinusoidal (STS) model S* are the L* triplets pf =1 flk, af, qbf} often called peaks.

In order to simultaneously optimize partial tracking and source formation, we construct a graph over
the entire duration of the sound mixture of interest. Unlike approaches based on local information
[8], we utilize the global normalized cut criterion to partition the graph. Each partition is a set of
peaks that are grouped together such that the similarity within the partition is minimized and the
dissimilarity between different partitions is maximized. The edge weight connecting two peaks pf
and p¥’ (k is the frame index and [ is the peak index) depends on the proximity of both frequency
and amplitude:

W (prpy)) = Wyprp))) + Wa (o) 7)) )

Notice that edges are formed both for peaks within a frame and peaks across frames, and the number
of peaks for each frame may vary. Figure 2 shows the clustering of several harmonics within the
same source (an orca vocalization) in the presence of significant noise by also incorporating into the
similarity calculation harmonicity informations.

4 Temporal Constraints

In addition to the aforementioned similarities, we now introduce a similarity measure that considers
time and continuity constraints. Our primary motivation stems from the fact that most illusions of
continuity, or “perceptual” continuity, exhibited by the ASA scenario (see Section 2) are due to the
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Figure 3: Frequency masking curve.

perceptual phenomenon called masking which is widely used in the audio coding area. Finally, we
propose an interpretation of the perceptual mechanism underlying the ASA scenario illustrated in
figure 1 that is based on the masking phenomenon, and we illustrate how our algorithm models it.

4.1 Temporal and Frequency Masking

The perceptual behavior of the ASA scenario may be interpreted with consideration to the frequency
and temporal masking effects described in [9]. The principal behind the frequency masking effect is
that every harmonic component of a sound has the ability to ”mask”, or render inaudible, harmonics
having a similar frequency and smaller amplitude; the amplitude threshold of a harmonic that can be
masked is approximately inversely proportional to the frequency difference between the masked and
masking harmonics when frequency is measured using the Bark scale, see Figure 3. An important
parameter that measures this phenomenon is the signal-to-mask ratio (SMR) which increases as the
audibility of a tone increases such as the one labeled with a square stem in Figure 3.

The notable result that may be drawn from the frequency masking effect is that if we perceive an
harmonic at some frequency, then based on perception alone, we cannot say anything about the
frequency content of the sound within the thresholded maskable region of the Bark-dB scale that
surrounds the harmonic. This has interesting implications with respect to the ASA scenario. When
the breaks in an oscillating pitch glide contain silence, we do not experience frequency masking
during the break, and thus, we are able to infer reliably that no harmonics are actually present. In
this case, we hear the silent break which results in the perception of the pitch glide as disconnected.

Now consider the case in which the break in the oscillating pitch glide are filled with white noise
of sufficient energy to cause the perception of a pitch glide that is continuous through the noise. In
this case, the white noise provides a continuum of frequency components, all of which are capable
of inducing masking effects. Due to these masking effects, we are not able to infer anything about
the presence or absence of harmonics having less energy than the noise itself, and yet we perceive
a continuous pitch glide! We hypothesize that in this situation the human brain cannot determine
the presence or absence of the pitch glide through the noise, and it therefore tries to reconcile this
information using other cues. One such cue is likely temporal continuity; since the disjoint portions
of the pitch glide are separated by a relatively small break in time, the brain infers that the glide is
continuous.

In addition to the frequency masking discussed above, temporal masking effects also exist, of which
there are two types. Post-masking occurs when the masking sound disappears. In fact, its effect
persists in time during some number of milliseconds (See figure 4). As a consequence, even if the
masking sound is not present, the masking effects persist, though they decrease with time. Perhaps
more surprisingly, pre-masking also exists. More precisely, the masking effect is active a few mil-
liseconds before the masking sound really appears. However, this phenomenon is less significant
than post-masking.

4.2 Similarity Metric

Following these remarks, we introduce a similarity metric that deals with the problem of perceptual
continuity. First, a given masking curve that considers both frequency and temporal masking phe-
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Figure 4: Approximated curve of temporal post-masking.

nomena is computed for each analyzed frame. The masking power of neighboring tones are additive,
but in a non-linear way. In our implementation, the masking curve at a given frequency is set to the
maximal masking contribution of the neighboring tones in frequency and time [10, 11].

Let us consider the case of two peaks (péC , pF+m) several frames apart. If these peaks belong to

the same partial, then the energy of this partial within the frame interval will generate peaks or be
masked by another source. Let us consider some virtual peaks that model the continuous partial
between pf and pF+™ with parameters linearly interpolated: p**%,i € [1,n — 1]. The temporal
similarity between two peaks is then:

n—1
Wipl,pi™") = F <Z SMR(ﬁ’““)) 3)
i=1

where F is in our case a radial basis function and SMR is the Signal-to-Mask-Ratio of the virtual
peaks, see Figure 3.

S Experiments

To exhibit the advantageous properties of the proposed metric, we now consider three test cases
taken from the ASA scenario. In the first case, a sinusoidal tone is interrupted for 5 ms. According
to our listening tests, the gap is perceived, but the tones before and after the gap are perceived as
only one tone. The second test case considers a longer gap of approximately 50 ms where the tones
are perceived separately. In the last case, we consider even longer gaps (120 ms) filled with high
amplitude low-pass-filtered noise. In this case, the two separated tones are perceived as continuous.

The results of our algorithm for these three test cases are shown in Figure 5 from top to bottom. We
used the combination of frequency, amplitude and time similarity metrics and requested 5 clusters.
For the sake of clarity, the peak clusters are illustrated with filled or unfilled dots for each test case.
For example, all the peaks of the second experiment belong to the same cluster, whereas the peaks
of the first and last experiments are separated into two different clusters.

These experiments show that a time-constrained similarity metric can be successfully expressed in
terms of the masking phenomenon. The advantage of this is the ability to simultaneously deal with
time and continuity constraints in a perceptive way.

6 Future Work

The use of intermediate time-frequency representations calculated using our method is an interesting
approach to reduce the complexity of polyphonic sounds and provide a more high level description.
By using perceptively motived similarity metrics, we aim at providing a representation that is easier
to interpret and to interact with.

We have shown that the use of the masking phenomena can be succesfully considered to express the
“continuity illusion” phenomenon. Other aspects of temporal constraints should be investigated in
the near future. For example, we would like to reduce the complexity of the algorithm by considering
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Figure 5: Results of the proposed algorithm for the three test cases
using temporal and continuity constraints.

the computation of the affinity matrix for several fixed time intervals instead of considering the whole
signal duration.

We believe that the use of such a front-end for more complex machine learning or inference algo-
rithms may lead to methods of practical complexity for applications such as speech enhancement,
bioacoustics (see Figure 2), and music information retrieval.
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