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Abstract. We present a method for finding correlated components iroaaratil
video signals. The concept of canonical correlation amalgseformulated such
that it allows us to incorporate non-negativity constraim the coefficients. This
additional requirement ensures that projection direstigioey the non-negativity
requirements of energy signals. By finding multiple orthogjadirections we fi-
nally obtain a component-based decomposition of both daidalities. Experi-
ments for simultaneous source separation in both video adid atreams effec-
tively demonstrate the benefits of this approach.

1 Introduction

In difficult auditory environments, such as a discussion icaéeteria where talkers
interfere and reverberation is high, humans often make tigeswal cues to facilitate
understanding and separate a speaker’s voice from the tmasid In contrast to the
auditory signal, the visual input is free of reflections, aadions of the visual field
can be uniquely assigned to a source. So if there is congigeoaerlap in the spatial
or frequency domain between acoustic sources, we expecisitieom incorporating
video into a source separation or signal enhancement tiigaras compared to only
relying on information available in the audio signal.

In recent years, there have been several proposals to expostatistical depen-
dence of synchronous audio and video signals. Methods®kihd typically find pro-
jections of both data modalities that either maximize muinfarmation [1, 2] or cor-
relation [3]. These methods, however, are limited in se\aspects, e.g. the restriction
to smoothl, penalties that ensure differentiability [1, 2], or the asyetric treatment
of audio and video [3]. A common drawback of all these methsdiseir sensitivity to
outliers and the possible occurrence of negative projedidefficients which therefore
cannot be interpreted as energy signals. The latter asppatticularly important if one
is interested not only in one pair of projections, busaweral such pairs of highly corre-
lating components of the audio and the video signal. Noratiéty of the coefficients,
on the other hand, assures that individual projections eefalid energy signals that
successively decompose the total audio and video infooma®n the video side, this
means that a pixel can at most be part of one source, wherdas imconstrained case
a pixel can be part of many projections (with mixed signs dfficients) to explain the
correlation structure.

We present a method that obeys such non-negativity contstraf energy signals.
The key idea is to include these constraints in a generalizesion ofcanonical cor-
relation analysis (CCA). The method is highly flexible in that it allows the cbeiof



individual regularization strategies for the differentalenodalities such as sparseness
constraints for video and smoofly penalties for audio. Furthermore, it allows us to
diminish the influence of outliers by substituting leastraes functionals with robust
regression procedures.

Method Overview. We perform Canonical Correlation Analysis (CCA) to locatarses

in video and separate their corresponding audio signalsligyirfig. Using a multi-
dimensional representation of both audid) (@and video '), we seek linear projec-
tion vectorse and g that maximize the correlation between the two projectedaii)
argmax, g corr(Aa, V 3). To locate a source in the video signal, we identify those pix
els whose coefficients contribute most to the projectionti@naudio side, a properly
defined projection can be interpreted as a frequency-dofittein amplifying frequen-
cies contained in the source and attenuating others.

We require the projection coefficients to be nonnegatif€}, 5(i) > 0 Vi. When
working with pixel intensity information, this guarantetbsit a weighted video frame
V(i) = V(i)3(i) can again be interpreted as a proper image.

For typical video resolutions (e.g. 320x240 pixels) andrfearates (e.g. 25Hz), the
CCA problem will be severely under-determined and we nedddode a regulariza-
tion term to find nontrivial correlations. Concerning theled signal, it is desirable to
have sparse projectionss so that only those pixels have nonzero weights, that are as-
sociated with the source in questidn. regularization on thg(7)’s will do just that. On
the audio side, sparsity is probably not desirable, bedaaséng out whole frequency
bands can lead to audible artifacts. If we need to regularezean add aik., term, or a
smoothness penalty on coefficient§), a(i + 1) of adjacent frequency bands. It is an
advantage of our approach that one can choose regularizgfie and tuning parame-
ters individually for audio and video signals, each begiesliior its data domain.

2 Nonnegative Canonical Correlation Analysis

The classical CCA method finds linear projectiens of two multidimensional ran-
dom variables such that their correlation is maximized

arg m%x corr(Aa, V j3). (1)

A andV are matrices of size x d, andn x d,, where each row corresponds to one
realization of the random variable. In practice, theseedéht realizations are mimicked
by using successive frames in the audio and video signal.

It can be shown that maximizing the correlation in (1) is &glént to minimizing

argmiél E[Aa — VB, st.||Aall3 = 1A V|5 = 1. )

The solution is readily obtained using the eigenvalue deumition of the (sample)
covariance matrix (for centeretiand!’)
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A full derivation of the procedure can be found in [4]. Theeagigalue decomposition
gives us not one, but all projection paifday, V 8;) having maximum correlation,
under the condition that subsequent projection pairs dah@gonal to each other. That
is aj Coacy = By CouBBi = a, CopBj = 0 for k # L. It is also possible to include an
L, regularization penalty, to deal with the case that d.

Holding « fixed, the optimization criterion (2) is just the minimum mesguared
error criterion for regression coefficient$:). This formulation suggest an alternative
solution approach to the CCA problem: we alternately hold set of parameters (e.qg.
«) constant and perform a regression step to find the corréappset of coefficients
(8). This procedure is iterated until convergence. After eaghession step, the coeffi-
cients have to be renormalized to satisfy (2).

An iterative regression solver is attractive for severasmns, and has therefore
been proposed several times in the literature (e.g. [5])c&vieperform ridge regression
(L2), the Lassol1) or any other regression method, and choose the appropeasdty
for each data modality. As a second benefit, techniques farstoregression can be
incorporated: the quadratic error in (2) can be replacel mibre robust measures such
as the Huber loss [6] in order to diminish the effect of ouflien the data. Finally, it
is straightforward to include non-negativity constraintsthe projection coefficients
andg.

Nonnegative regularized regression. When correlating audio to video, the number of
pixelsd, typically exceeds the number of video frameby far. As a consequence, the
regression problem becomes ill-posed, i.e. there alwaigtsex solution that provides
a perfect regression fit with zero error. In order to find nieidt correlations it is, thus,
necessary to include a regularization penalty. Bnpenalty seems suitable for the
video signal, because it leads to a sparse solution wheygodls corresponding to the
audio source have non-zero coefficients. On the audio sidle,@nalty is preferable
because completely zeroing out bands leads to undesireduatible artifacts in the
reconstruction.

We require the projection coefficientsands to be nonnegative, since non-negativity
ensures that all correlation vectors themselves are valabe- or audio energy sig-
nals and that successively found correlation directiom®agose the two data modal-
ities into additive energy components. Nonnegative regjpescan be solved directly
by quadratic programming algorithms. Fast approximagahniques that in addition
allow the inclusion of bothl; and L, penalties have been proposed recently. One
particularly interesting such method is th@notone incremental forward stagewise
regression approach described in [7]. In its original formulation, fiproximates the
monotone LASSO that computed.;-constrained regression fits in which the norms of
the weights monotonically increase when relaxingfheconstraint. This algorithm in-
herently finds nonnegative weights, which for standardiappbns (where this feature
is undesirable) is compensated for by replicating the ijaitih with negative sign. For
our purposes, we simply drop this data replication step whaaves us with a highly
efficient iterative method for nonnegativg-penalized regression fits.

Finding all CCA projections. For the source separation task, we are naturally interested
in more than one projection direction, expecting that digtsources are retrieved in



different projections. We incorporate orthogonality doaisits on subsequent projec-
tions by means of deflation. After every regression stepptbgction vectory; is
adjusted so that the projectiof is uncorrelated (and therefore orthogonal) to all
previously found projectiongda,, V 3;), | < k + 1. For our special case of allowing
only non-negative coefficients, orthogonal projections are only possibleéf$ame col-
umn is not chosen more than once. Since we prefer sparsefoogonly on the video
data and not in the audio domain, we only orthogonalizedstivectors by requiring
thatfi+1 (i) > 0 = B;(i) = 0 VI < k + 1. This constraint corresponds to removing
all previously selected pixels (and possibly all pixels icl@se neighborhood thereof)
before searching for the next correlatidagy,, V 3,).

3 Experiments

We tested our method on a short video stream in which 2 pesgmak simultaneously.
The audio signal was represented as a vector of 50 frequesnoysbspaced in mel
scale in the range 100 Hz - 8kHz, while for the video signal ing$y worked on the
pixel-intensity vectors. Nonnegative CCA was performeglating windows of size 50
frames. We used; regularization for the video in order to identify single gig, and’-
regularization on the audio side. The first canonical catieh found clearly identified
the left speaker, as can be seen in the middle panel of figie then searched for a
second orthogonal projection vectey by excluding all pixels within small windows
around the identified correlating areas. The second cdaorldirection then clearly
identified the second speaker, see the right panel in figure 1.

Fig. 1. Original scene (left), extracted image areas in the diveatf highest correlation (middle),
extracted image areas in the second correlating proje(tigint).

Futurework. While we have shown that nonnegative CCA performs well inifigdlis-
tinct areas in the image which e.g. correspond to differpatikers, the reconstructed
audio signals did not allow a good source separation whioWwgher, could not be ex-
pected by solely using frequency bands to represent the aigtial. On the relevant
time scale for correlating audio and video the frequencyasgntation is no longer dis-
criminative for separating concurrent speakers. We pladtiress this problem by us-
ing spatial audio features derived from a microphone ariityadaptive beam-forming.



4 Conclusion

We have presented the nonnegative CCA method for jointl{yaimey audio and video
streams. Compared to existing approaches of this kindtahfmnique allows us to find
a series of orthogonal projections with nonnegative weaigltich successively decom-
pose the signal into single components.
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