
Analysis of polyphonic audio using source-filter
model and non-negative matrix factorization

Tuomas Virtanen∗and Anssi Klapuri
Tampere University of Technology, Institute of Signal Processing

Korkeakoulunkatu 1, FI-33720 Tampere, Finland
tuomas.virtanen@tut.fi, anssi.klapuri@tut.fi

Abstract

This paper proposes a method for analysing polyphonic audiosignals
based on a signal model where an input spectrogram is modelled as a
linear sum of basis functions with time-varying gains. Eachbasis is
further represented as a product of a “source” spectrum and the mag-
nitude response of a “filter”. This formulation reduces the number of
free parameters needed to represent realistic audio signals and leads to
a more reliable parameter estimation. Two novel estimationalgorithms
are proposed, one extended from non-negative matrix factorization and
the other from non-negative matrix deconvolution. In preliminary experi-
ments with singing signals, both algorithms have been foundto converge
towards meaningful analysis results.

1 Introduction

Model-based analysis of audio signals has received increasing attention in recent years and
even quite complex generative models have been proposed [2,3]. Applications of this
include for example sound separation, audio coding, music transcription, and sound source
recognition.

This paper proposes a method for analysing the component sounds in a polyphonic au-
dio signal based on the source-filter model of sound production. Here “source” refers to
a vibrating object such as a guitar string, and “filter” represents the resonance structure
of the rest of the instrument which colors the produced sound. The source varies with
pitch and the degree of periodicity, whereas the filter varies with timbre. This framework
has been used for decades in speech coding [7] and sound synthesis [9], but has not been
properly adopted in signal analysis and classification problems. Usually a less structured
approach is employed, modeling sound spectra directly withthe Fourier transform or with
Mel-frequency cepstral coefficient (MFCC). These have certain limitations that are ad-
dressed in this paper.

We have recently proposed an algorithm for modeling the time-varying spectral energy
distribution of musical sounds when presented in isolation[5]. In that work, the source-
filter model was found to lead to a clear improvement over MFCC-like models. Here the
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analysis is performed using a completely different estimation algorithm which is suitable
for the analysis of polyphonic signals. Also, several different filters are allowed per one
sound source, which makes the model more suitable for singing, for example, were the
vocal tract filter varies over time.

As a framework for polyphonic signal analysis we use a linearsignal model for the magni-
tude spectrumxt(k) of the mixture signal, wherek is frequency index andt is frame index.
The signalxt(k) is modelled as a sum of basis functions:

x̂t(k) =

N∑

n=1

gn,tbn(k) (1)

wheregn,t is the gain of basis functionn in framet, andbn(k), n = 1, . . . , N are the bases.
The bases represent the magnitude spectra of different musical tones. Several active bases
are allowed at each time, making the model suitable for polyphonic signals. Existing unsu-
pervised learning methods for estimating the basis functions and gains include independent
component analysis (ICA) [1], sparse coding [10], and non-negative matrix factorization
(NMF) [8]. When used for sound separation, currently the bestresults have been obtained
using NMF [11].

2 Proposed signal model

A problem with the model (1) is that the mixture signal is represented as a sum of fixed
spectra: each pitch value of each instrument requires a distinct basis function. The large
number of free parameters makes the estimation less reliable, and also, clustering the esti-
mated bases to sound sources is difficult.

In the proposed signal model, each basisbn(k) is described as a product of the magnitude
spectra of an excitation (source)ei(k) and a filterhj(k). This leads to the model

x̂t(k) =
∑

i,j

gi,j,tei(k)hj(k) (2)

which assigns one excitation per pitch value and one filter per instrument (or phoneme in
singing). A polyphonic signal consists of several excitation and filter combinations occur-
ring simultaneously or in sequence.

We denote the number of excitations byI and the number of filters byJ . Note that the
number of bases,(I × J), is significantly larger than that of excitations or filters.As
a consequence, the number of parameters to estimate is smaller (bases are restricted to
bn(k) = ei(k)hj(k)) which makes the estimation more reliable. Also, the proposed signal
model associates components with the same timbre (resp. pitch), leading to an automatic
clustering of bases to sound sources (resp. musical notes).

In Section 4, we also introduce a signal model which allows the pitch of an individual
excitation signal to vary. This makes it more suitable for singing, where pitch values are not
quantized and therefore cannot be well represented with a countable set of excitations. In
that latter model, a singing signal can be represented with asingle pitch-varying excitation
and multiple filters (one per phoneme).

3 Non-negative matrix factorization algorithm for parameter
estimation

When the bases are magnitude or power spectra, it is natural torestrict them to be entry-
wise non-negative. Furthermore, the model can be restricted to be purely additive by limit-
ing the gains to be non-negative. NMF estimates the bases andtheir gains by minimizing



the reconstruction error between the observed spectrogramand the model while restricting
the parameters to non-negative values. It has turned out that the non-negativity restrictions
alone are sufficient for sound source separation [8].

Commonly used measures for the reconstruction error are theEuclidean distance, and di-
vergenced, defined as

d(x, x̂) =
∑

k,t

xt(k) log
xt(k)

x̂t(k)
− xt(k) + x̂t(k) (3)

The divergence is always non-negative, and zero only whenxt(k) = x̂t(k) for all k and
t. It can be minimized for example using the multiplicate updates proposed by Lee and
Seung [6]: the parameters are initialized to random non-negative values, and updated by
applying multiplicative update rules iteratively. Each update decreases the value of the
divergence, until the algorithm converges.

We propose an augmented NMF algorithm for estimating the parameters of the model (2).
Multiplicative updates which minimize the divergence (3) are given by

gi,j,t ← gi,j,t

∑
k rt(k)ei(k)hj(k)∑

k ei(k)hj(k)
, (4)

ei(k) ← ei(k)

∑
j,t rt(k)gi,j,thj(k)
∑

j,t gi,j,thj(k)
, (5)

and

hj(k) ← hj(k)

∑
i,t rt(k)gi,j,tei(k)
∑

i,t gi,j,tei(k)
, (6)

wherert(k) = xt(k)
x̂t(k) is evaluated using (2) before each update.

The overall estimation algorithm is given as follows:

1. Choose the number of excitations and filters. Initialize each parametergi,j,t, ei(k),
andhj(k) with a random positive values.

2. Update the gains using (4).

3. Update the excitations using (5).

4. Update the filters using (6).

5. Repeat steps 2-4 until the algorithm converges.

It can be shown that the divergence (3) is non-increasing under each update. When prior
knowledge about the sources is available, it can be used to initialize the excitations and
filters.

4 Representing several pitch values with a single excitation

The linear model (1) requires multiple basis functions to represent tones with different
pitch values. This limitation has been addressed, for example, by FitzGerald [4] and Vir-
tanen [12, pp. 57-65], who translated basis functions on logarithmic frequency axis to
produce different fundamental values. In this model, each gain gn,t in (1) is replaced by
gaingn,t,τ , which denotes the amount of contribution of thenth basis function, which is
translated byτ frequency bins. The model can be written as

x̂t(k) =
∑

n,τ

gn,t,τ bn(k − τ). (7)



In this model, the translation affects the entire basis function, i.e. the product of the excita-
tion and the filter, and therefore the filter becomes translated, too. A more realistic model is
obtained by producing different fundamental frequency values by translating a single har-
monic excitation, and keeping the filter fixed. When the spectrum is modeled as a product
of excitationei(k) and filterhj(k), the model can be written as

x̂t(k) =
∑

i,j,τ

gi,j,t,τei(k − τ)hj(k). (8)

Parameters of the model (7) have been estimated by algorithms extended from NMF. Simi-
lar approach can be used to estimate the parameters of the proposed model (8). Multiplica-
tive updates which minimize the divergence (3) for model (8)are given by

gi,j,t,τ ← gi,j,t,τ

∑
k,z rt(k + z)ei(k)hj(k)

∑
k,z ei(k + z)hj(k + z)

, (9)

ei(k) ← ei(k)

∑
j,t,z rt(k + z)gi,j,t,zhj(k + z)

∑
j,t,z gi,j,t,zhj(k + z)

, (10)

and

hj(k) ← hj(k)

∑
i,t,z rt(k)gi,j,t,zei(k − z)
∑

i,t,z gi,j,t,zei(k − z)
. (11)

The overall estimation is similar to the algorithm for NMF. The parameters are initialized
with random positive values, and updated sequentially using Equations (9)-(11).

The model is especially suitable for singing voice, since only a single excitation is required
to model all harmonic tones, and different phonemes can be modeled using different filters.

5 Conclusions

Estimation algorithms were proposed for two signal models (2) and (8), both of which aim
at reducing the amount of free parameters needed to represent realistic audio signals. In
preliminary experiments with singing signals, both algorithms were found to converge and
to find more meaningful bases than the conventional NMF whichuses the signal model (1).
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