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Abstract

This paper proposes a method for analysing polyphonic asidioals
based on a signal model where an input spectrogram is mddadie
linear sum of basis functions with time-varying gains. E&esis is
further represented as a product of a “source” spectrum la@dntag-
nitude response of a “filter”. This formulation reduces thanber of
free parameters needed to represent realistic audio signdl leads to
a more reliable parameter estimation. Two novel estimadigorithms
are proposed, one extended from non-negative matrix faat@n and
the other from non-negative matrix deconvolution. In prétiary experi-
ments with singing signals, both algorithms have been faamdnverge
towards meaningful analysis results.

1 Introduction

Model-based analysis of audio signals has received incigagtention in recent years and
even quite complex generative models have been propose]. [2Applications of this
include for example sound separation, audio coding, musitstription, and sound source
recognition.

This paper proposes a method for analysing the componendsdu a polyphonic au-
dio signal based on the source-filter model of sound prodactHere “source” refers to
a vibrating object such as a guitar string, and “filter” regenats the resonance structure
of the rest of the instrument which colors the produced soufilde source varies with
pitch and the degree of periodicity, whereas the filter wawh timbre. This framework
has been used for decades in speech coding [7] and sounasigni®], but has not been
properly adopted in signal analysis and classification lprab. Usually a less structured
approach is employed, modeling sound spectra directly thigh-ourier transform or with
Mel-frequency cepstral coefficient (MFCC). These haveaderlimitations that are ad-
dressed in this paper.

We have recently proposed an algorithm for modeling the tlamying spectral energy
distribution of musical sounds when presented in isolafin In that work, the source-
filter model was found to lead to a clear improvement over MHRE models. Here the
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analysis is performed using a completely different estiomaflgorithm which is suitable
for the analysis of polyphonic signals. Also, several déf# filters are allowed per one
sound source, which makes the model more suitable for sindgor example, were the
vocal tract filter varies over time.

As a framework for polyphonic signal analysis we use a lirsggmal model for the magni-
tude spectrum, (k) of the mixture signal, wherk is frequency index antlis frame index.
The signake; (k) is modelled as a sum of basis functions:

N
2o(k) =) gnabn(k) €y
n=1
whereg,, . is the gain of basis functionin framet, andb,,(k), n» = 1,..., N are the bases.

The bases represent the magnitude spectra of differentatisnes. Several active bases
are allowed at each time, making the model suitable for gaygc signals. Existing unsu-
pervised learning methods for estimating the basis funstamd gains include independent
component analysis (ICA) [1], sparse coding [10], and negative matrix factorization
(NMF) [8]. When used for sound separation, currently the besitllts have been obtained
using NMF [11].

2 Proposed signal model

A problem with the model (1) is that the mixture signal is eg@nted as a sum of fixed
spectra: each pitch value of each instrument requires edlistasis function. The large
number of free parameters makes the estimation less meliabtl also, clustering the esti-
mated bases to sound sources is difficult.

In the proposed signal model, each basi&:) is described as a product of the magnitude
spectra of an excitation (sourcg) k) and a filterh; (k). This leads to the model

2y(k) = Zgi,j,tei(k)hj(/f) 2

which assigns one excitation per pitch value and one filteinsrument (or phoneme in
singing). A polyphonic signal consists of several exaitatand filter combinations occur-
ring simultaneously or in sequence.

We denote the number of excitations byand the number of filters by. Note that the
number of bases/ x .J), is significantly larger than that of excitations or filterds

a consequence, the number of parameters to estimate isesrfiakes are restricted to
b (k) = e;(k)h;(k)) which makes the estimation more reliable. Also, the prepasgnal
model associates components with the same timbre (reggh) piéading to an automatic
clustering of bases to sound sources (resp. musical notes).

In Section 4, we also introduce a signal model which alloves fiiich of an individual
excitation signal to vary. This makes it more suitable fagéng, where pitch values are not
qguantized and therefore cannot be well represented witluatable set of excitations. In
that latter model, a singing signal can be represented wathgde pitch-varying excitation
and multiple filters (one per phoneme).

3 Non-negative matrix factorization algorithm for parameter
estimation

When the bases are magnitude or power spectra, it is naturastiict them to be entry-
wise non-negative. Furthermore, the model can be reddriotbe purely additive by limit-
ing the gains to be non-negative. NMF estimates the basethaitdjains by minimizing



the reconstruction error between the observed spectrognainthe model while restricting
the parameters to non-negative values. It has turned outh@aon-negativity restrictions
alone are sufficient for sound source separation [8].

Commonly used measures for the reconstruction error arEudbkdean distance, and di-
vergencel, defined as

d(w, ) =Y (k) log z(k)
k.t

xt(k)

— xi(k) + 2¢(k) ®)

The divergence is always non-negative, and zero only whéh) = z,(k) for all k£ and

t. It can be minimized for example using the multiplicate updgroposed by Lee and

Seung [6]: the parameters are initialized to random noratiegvalues, and updated by

applying multiplicative update rules iteratively. Eachdape decreases the value of the
divergence, until the algorithm converges.

We propose an augmented NMF algorithm for estimating tharpaters of the model (2).
Multiplicative updates which minimize the divergence (8 given by

P ,tEk re(k)ei(k)h;(k)

v Y ei(k)hy(k)
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is evaluated using (2) before each update.

(4)

and

hj(k) < h;(k) (6)

z¢ (k)
Z4¢ (k)

The overall estimation algorithm is given as follows:

wherer, (k) =

1. Choose the number of excitations and filters. Initialaeteparametey; ; ., e;(k),
andh; (k) with a random positive values.

Update the gains using (4).

Update the excitations using (5).

Update the filters using (6).

Repeat steps 2-4 until the algorithm converges.

o wD

It can be shown that the divergence (3) is non-increasinguedch update. When prior
knowledge about the sources is available, it can be usedtialiire the excitations and
filters.

4 Representing several pitch values with a single excitatio

The linear model (1) requires multiple basis functions tpresent tones with different
pitch values. This limitation has been addressed, for el@nyy FitzGerald [4] and Vir-

tanen [12, pp. 57-65], who translated basis functions oaritlgmic frequency axis to
produce different fundamental values. In this model, eath @, . in (1) is replaced by

gain g, ¢ -, which denotes the amount of contribution of thié basis function, which is
translated by frequency bins. The model can be written as

:%t(k) = Z gn,t,rbn(k - T)~ (7)
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In this model, the translation affects the entire basistionci.e. the product of the excita-
tion and the filter, and therefore the filter becomes traedldbo. A more realistic model is
obtained by producing different fundamental frequencyi@alby translating a single har-
monic excitation, and keeping the filter fixed. When the spmetis modeled as a product
of excitatione; (k) and filterh; (k), the model can be written as

2o(k) =Y gijarei(k —1)h;(k). (8)

6,4,T

Parameters of the model (7) have been estimated by algarihtended from NMF. Simi-
lar approach can be used to estimate the parameters of thesgmodel (8). Multiplica-
tive updates which minimize the divergence (3) for modela@) given by

Do,z Tk £ 2)ei(R)hy (k)
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The overall estimation is similar to the algorithm for NMF& parameters are initialized
with random positive values, and updated sequentiallyguEnuations (9)-(11).

The model is especially suitable for singing voice, sincly arsingle excitation is required
to model all harmonic tones, and different phonemes can likehad using different filters.

5 Conclusions

Estimation algorithms were proposed for two signal mod&is(d (8), both of which aim
at reducing the amount of free parameters needed to represdistic audio signals. In
preliminary experiments with singing signals, both algoris were found to converge and
to find more meaningful bases than the conventional NMF whgsgs the signal model (1).
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